Lid2 Is Required for Coordinating H3K4 and H3K9 Methylation of Heterochromatin and Euchromatin

نویسندگان

  • Fei Li
  • Maite Huarte
  • Mikel Zaratiegui
  • Matthew W. Vaughn
  • Yang Shi
  • Rob Martienssen
  • W. Zacheus Cande
چکیده

In most eukaryotes, histone methylation patterns regulate chromatin architecture and function: methylation of histone H3 lysine-9 (H3K9) demarcates heterochromatin, whereas H3K4 methylation demarcates euchromatin. We show here that the S. pombe JmjC-domain protein Lid2 is a trimethyl H3K4 demethylase responsible for H3K4 hypomethylation in heterochromatin. Lid2 interacts with the histone lysine-9 methyltransferase, Clr4, through the Dos1/Clr8-Rik1 complex, which also functions in the RNA interference pathway. Disruption of the JmjC domain alone results in severe heterochromatin defects and depletion of siRNA, whereas overexpressing Lid2 enhances heterochromatin silencing. The physical and functional link between H3K4 demethylation and H3K9 methylation suggests that the two reactions act in a coordinated manner. Surprisingly, crossregulation of H3K4 and H3K9 methylation in euchromatin also requires Lid2. We suggest that Lid2 enzymatic activity in euchromatin is regulated through a dynamic interplay with other histone-modification enzymes. Our findings provide mechanistic insight into the coordination of H3K4 and H3K9 methylation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Substitutions in the Amino-Terminal Tail of Neurospora Histone H3 Have Varied Effects on DNA Methylation

Eukaryotic genomes are partitioned into active and inactive domains called euchromatin and heterochromatin, respectively. In Neurospora crassa, heterochromatin formation requires methylation of histone H3 at lysine 9 (H3K9) by the SET domain protein DIM-5. Heterochromatin protein 1 (HP1) reads this mark and directly recruits the DNA methyltransferase, DIM-2. An ectopic H3 gene carrying a substi...

متن کامل

Drosophila SETDB1 Is Required for Chromosome 4 Silencing

Histone H3 lysine 9 (H3K9) methylation is associated with gene repression and heterochromatin formation. In Drosophila, SU(VAR)3-9 is responsible for H3K9 methylation mainly at pericentric heterochromatin. However, the histone methyltransferases responsible for H3K9 methylation at euchromatic sites, telomeres, and at the peculiar Chromosome 4 have not yet been identified. Here, we show that DmS...

متن کامل

Histone demethylase JMJD2B coordinates H3K4/H3K9 methylation and promotes hormonally responsive breast carcinogenesis.

It is well-documented that the methylation of histone H3 lysine 4 (H3K4) and of H3K9 are mutually exclusive, an epigenetic phenomenon conserved from yeast to humans. How this opposed methylation modification is accomplished and coordinated in mammalian cells is poorly understood. Here we report that the H3K9 trimethyl demethylase JMJD2B is an integral component of the H3K4-specific methyltransf...

متن کامل

Endogenous targets of RNA-directed DNA methylation and Pol IV in Arabidopsis.

DRD1 is a SWI/SNF-like protein that cooperates with a plant-specific RNA polymerase, Pol IVb, to facilitate RNA-directed de novo methylation and silencing of homologous DNA. Screens to identify endogenous targets of this pathway in Arabidopsis revealed intergenic regions and plant genes located primarily in euchromatin. Many putative targets are near retrotransposon LTRs or other intergenic seq...

متن کامل

Functional antagonism between histone H3K4 demethylases in vivo.

Dynamic regulation of histone modifications is critical during development, and aberrant activity of chromatin-modifying enzymes has been associated with diseases such as cancer. Histone demethylases have been shown to play a key role in eukaryotic gene transcription; however, little is known about how their activities are coordinated in vivo to regulate specific biological processes. In Drosop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 135  شماره 

صفحات  -

تاریخ انتشار 2008